Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 146
Filter
1.
Chempluschem ; : e202400158, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38733075

ABSTRACT

Photocatalytic technology can efficiently convert solar energy to chemical energy and this process is considered as one of the green and sustainable technology for practical implementation. In recent years, metal-organic frameworks (MOFs) have attracted widespread attention due to their unique advantages and have been widely applied in the field of photocatalysis. Among them, noble metals have contributed significant advances to the field as effective catalysts in photocatalytic reactions. Importantly, noble metals can also form a synergistic catalytic effect with MOFs to further improve the efficiency of photocatalytic reactions. However, how to precisely control the synergistic effect between MOFs and noble metals to improve the photocatalytic performance of materials still needs to be further studied. In this review, the synergistic effects of MOFs and noble metal catalysts in photocatalytic reactions are firstly summarized in terms of noble metal nanoparticles, noble metal monoatoms, noble metal compounds, and noble metal complexes, and focus on the mechanisms and advantages of these synergistic effects, so as to provide useful guidance for the further research and application of MOFs and contribute to the development of the field of photocatalysis.

2.
J Mol Model ; 30(5): 134, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38625615

ABSTRACT

CONTENT: Ubiquitin, a ubiquitous small protein found in all living organisms, is crucial for tagging proteins earmarked for degradation and holds pivotal importance in biomedicine. Protein functionality is intricately linked to its structure. To comprehend the impact of diverse temperatures on ubiquitin protein structure, our study delved into the energy landscape, hydrogen bonding, and overall structural stability of ubiquitin protein at varying temperatures. Through meticulous analysis of root mean square deviation and root mean square fluctuation, we validated the robustness of the simulation conditions employed. Within our simulated system, the bonding energy and electrostatic potential energy exhibited linear augmentation, while the van der Waals energy demonstrated a linear decline. Additionally, our findings highlighted that the α-Helix secondary structure of the ubiquitin protein gradually transitions toward helix destabilization under high-temperature conditions. The secondary structure of ubiquitin protein experiences distinct changes under varying temperatures. The outcomes of our molecular simulations offer a theoretical framework that enhances our comprehension of how temperature impacts the structural stability of ubiquitin protein. These insights contribute not only to a deeper understanding of iniquity's behavior but also hold broader implications in the realm of biomedicine and beyond. METHODS: All the MD simulations were performed using the GROMACS software with GROMOS96 force field and SPC for water. The ubiquitin protein was put in the center of a cubic box with a length of 8 nm, a setting that allowed > 0.8 nm in the minimal distance between the protein surface and the box wall. To remove the possible coordinate collision of the configurations, in the beginning, the steepest descent method was used until the maximum force between atoms was under 100 kJ/mol·nm with a 0.01 nm step size. Minimization was followed by 30 ps of position-restrained MD simulation. The protein was restrained to its initial position, and the solvent was freely equilibrated. The product phase was obtained with the whole system simulated for 10 ns without any restraint using an integral time step of 1 fs with different temperatures. The cutoff for short-range electronic interaction was set to 1.5 nm. The long-range interactions were treated with a particle-mesh Ewald (PME) method with a grid width of 1.2 nm.


Subject(s)
Molecular Dynamics Simulation , Ubiquitin , Temperature , Membrane Proteins , Molecular Conformation
3.
J Hazard Mater ; 470: 134181, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38569343

ABSTRACT

Electrochemically in-situ generation of oxygen and caustic soda is promising for sulfide management while suffers from scaling, poor inactivating capacity, hydrogen release and ammonia escape. In this study, the four-compartment electrochemical cell efficiently captured oxygen molecules from the air chamber to produce HO2- without generating toxic by-products. Meanwhile, the catalyst layer surface of PTFE/CB-GDE maintained a relatively balanced gas-liquid micro-environment, enabling the formation of enduring solid-liquid-gas interfaces for efficient HO2- electrosynthesis. A dramatic increase in HO2- generation rate from 453.3 mg L-1 h-1 to 575.4 mg L-1 h-1 was attained by advancement in operation parameters design (flow channels, electrolyte types, flow rates and circulation types). Stability testing resulted in the HO2- generation rate over 15 g L-1 and the current efficiency (CE) exceeding 85%, indicating a robust stable operational capacity. Furthermore, after 120 mg L-1 HO2- treatment, an increase of 11.1% in necrotic and apoptotic cells in the sewer biofilm was observed, higher than that achieved with the addition of NaOH, H2O2 method. The in-situ electrosynthesis strategy for HO2- represents a significance toward the practical implementation of sulfide abatement in sewers, holding the potential to treat various sulfide-containing wastewater.

4.
Methods Mol Biol ; 2779: 353-367, 2024.
Article in English | MEDLINE | ID: mdl-38526794

ABSTRACT

Flow cytometry (FC) is routinely used for hematological disease diagnosis and monitoring. Advancement in this technology allows us to measure an increasing number of markers simultaneously, generating complex high-dimensional datasets. However, current analytic software and methods rely on experienced analysts to perform labor-intensive manual inspection and interpretation on a series of 2-dimensional plots via a complex, sequential gating process. With an aggravating shortage of professionals and growing demands, it is very challenging to provide the FC analysis results in a fast, accurate, and reproducible way. Artificial intelligence has been widely used in many sectors to develop automated detection or classification tools. Here we describe a type of machine learning method for developing automated disease classification and residual disease monitoring on clinical flow datasets.


Subject(s)
Artificial Intelligence , Machine Learning , Flow Cytometry/methods , Software , Technology
5.
Fish Shellfish Immunol ; 148: 109495, 2024 May.
Article in English | MEDLINE | ID: mdl-38461876

ABSTRACT

Ube3a is a member of the E3 ubiquitin ligase HECTc family, and its role has been established in neurodevelopmental disorders. However, studies on its role in Japanese flounder are scarce. Thus, in this study, the ube3a of Japanese flounder was cloned, and its role in conferring resistance against Chinook salmon bafnivirus (CSBV) was analyzed. Japanese flounder ube3a encoded a protein containing 834 amino acids. Interestingly, its homology with the Atlantic halibut was determined to be 94%. In addition, there were differential expressions of ube3a in different tissues of Japanese flounder, with the highest expression level observed in the fin, followed by the gills and skin (P ≤ 0.05). Subcellular localization analysis revealed that Ube3a is a cytoplasmic protein. We established an in vitro CSBV infection model using Japanese flounder gill cell line (FG). After ube3a overexpression, the viral load was significantly lower than that of the control group (P ≤ 0.05). Contrastingly, after incubation of FG cells with an E3 ubiquitin ligase inhibitor, the viral load was significantly higher than in the control group (P ≤ 0.01). Then, the expression levels of nf-κb, traf3, and tnf-α after incubation with an E3 ubiquitin ligase inhibitor were examined. The results demonstrated that ube3a may exerted a significant antiviral effect in Japanese flounder via the ubiquitination pathway.


Subject(s)
Flounder , Animals , Flounder/genetics , Immunity, Innate/genetics , Tumor Necrosis Factor-alpha/genetics , Cell Line , Ubiquitin-Protein Ligases/genetics , Phylogeny
6.
Endocr Pract ; 30(5): 411-416, 2024 May.
Article in English | MEDLINE | ID: mdl-38458395

ABSTRACT

OBJECTIVE: Parathyroidectomy treats uncontrolled renal hyperparathyroidism (RHPT), requiring identification of all glands. Three types of enhancement are proposed. Type A lesions have higher arterial phase attenuation than the thyroid, type B lesions lack higher arterial phase attenuation but have lower venous phase attenuation, and type C lesions have neither higher arterial phase attenuation nor lower venous phase attenuation than the thyroid. We aimed to outline the image features of problematic parathyroid glands in RHPT and propose a 4-dimensional computed tomography (4DCT) interpretation algorithm. METHODS: This retrospective study involved data collection from patients with RHPT who underwent preoperative 4DCT for parathyroidectomy between January and November 2022. Pathologically confirmed parathyroid lesions were retrospectively identified on 4DCT according to the location and size described in the surgical notes. The attenuation of parathyroid lesions and the thyroid glands was assessed in 3 phases, and demographic data of the patients were collected. RESULTS: Ninety-seven pathology-proven parathyroid glands from 27 patients were obtained, with 86 retrospectively detected on 4DCT. In the arterial phase, the attenuation of parathyroid lesions in RHPT did not exceed that of the thyroid gland (P < .001). In the venous phase, parathyroid lesions demonstrated lower attenuation than the thyroid gland (P < .001). A total of 81 parathyroid lesions (94.2%) exhibited type B patterns. CONCLUSION: Unlike primary hyperparathyroidism, lesions in RHPT exhibited more type B enhancement, making them less readily identifiable in the arterial phase. Therefore, we propose a distinct imaging interpretation strategy to locate these problematic glands more efficiently.


Subject(s)
Four-Dimensional Computed Tomography , Humans , Retrospective Studies , Female , Four-Dimensional Computed Tomography/methods , Male , Middle Aged , Aged , Adult , Parathyroidectomy , Parathyroid Glands/diagnostic imaging , Parathyroid Glands/surgery , Parathyroid Glands/pathology , Hyperparathyroidism, Secondary/diagnostic imaging , Hyperparathyroidism, Secondary/surgery , Algorithms
7.
Lett Appl Microbiol ; 77(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38414284

ABSTRACT

The most toxic of the ochratoxins is ochratoxin A (OTA), which is primarily produced by species of Aspergillus and Penicillium that can be found in maize, wheat, coffee, red wine, and various grains. OTA induces immunotoxicity, nephrotoxicity, hepatotoxicity, teratogenicity, and carcinogenicity in both animals and humans. Thus, there is a need to identify mycotoxin detoxification agents that can effectively decontaminate OTA. Seeds of basil (Ocimum basilicum L.), chan (Hyptis suaveolens L.), and chia (Salvia hispanica L.) are functional foods capable of eliminating harmful substances. Despite this potential, the impact of these seeds on OTA detoxification remains unclear. This study reveals that milled basil, chan, and chia seeds adsorb significant levels of OTA, with chia demonstrating the highest adsorption capacity, followed by chan and basil seeds showing the least efficiency. Furthermore, milled basil, chan, and chia seeds effectively reduced OTA residues in artificial gastric and intestinal fluids, where they achieved up to 93% OTA adsorption in the former. In addition, these milled seeds were able to remove OTAs from canned, drip, and instant coffee. This study is the first to report the OTA elimination potential of basil, chan, and chia seeds.


Subject(s)
Ochratoxins , Ocimum basilicum , Humans , Animals , Ochratoxins/analysis , Coffee/chemistry , Seeds/chemistry
8.
Cell Res ; 34(2): 151-168, 2024 02.
Article in English | MEDLINE | ID: mdl-38182888

ABSTRACT

Autophagosome-lysosome fusion mediated by SNARE complexes is an essential step in autophagy. Two SNAP29-containing SNARE complexes have been extensively studied in starvation-induced bulk autophagy, while the relevant SNARE complexes in other types of autophagy occurring under non-starvation conditions have been overlooked. Here, we found that autophagosome-lysosome fusion in selective autophagy under non-starvation conditions does not require SNAP29-containing SNARE complexes, but requires the STX17-SNAP47-VAMP7/VAMP8 SNARE complex. Further, the STX17-SNAP47-VAMP7/VAMP8 SNARE complex also functions in starvation-induced autophagy. SNAP47 is recruited to autophagosomes following concurrent detection of ATG8s and PI(4,5)P2 via its Pleckstrin homology domain. By contrast, SNAP29-containing SNAREs are excluded from selective autophagy due to inactivation by O-GlcNAcylation under non-starvation conditions. These findings depict a previously unknown, default SNARE complex responsible for autophagosome-lysosome fusion in both selective and bulk autophagy, which could guide research and therapeutic development in autophagy-related diseases.


Subject(s)
Autophagosomes , Lysosomes , SNARE Proteins , Autophagy/physiology , Membrane Fusion/physiology , Humans
9.
Environ Sci Ecotechnol ; 20: 100355, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38192428

ABSTRACT

Peracetic acid (PAA), known for its environmentally friendly properties as a oxidant and bactericide, is gaining prominence in decontamination and disinfection applications. The primary product of PAA oxidation is acetate that can serve as an electron acceptor (EA) for the biosynthesis of medium-chain fatty acids (MCFAs) via chain elongation (CE) reactions. Hence, PAA-based pretreatment is supposed to be beneficial for MCFAs production from anaerobic sludge fermentation, as it could enhance organic matter availability, suppress competing microorganisms and furnish EA by providing acetate. However, such a hypothesis has rarely been proved. Here we reveal that PAA-based pretreatment leads to significant exfoliation of extracellular polymeric substances (EPS) from sludge flocs and disruption of proteinic secondary structures, through inducing highly active free radicals and singlet oxygen. The production of MCFAs increases substantially to 11,265.6 mg COD L-1, while the undesired byproducts, specifically long-chain alcohols (LCAs), decrease to 723.5 mg COD L-1. Microbial activity tests further demonstrate that PAA pretreatment stimulates the CE process, attributed to the up-regulation of functional genes involved in fatty acid biosynthesis pathway. These comprehensive findings provide insights into the effectiveness and mechanisms behind enhanced MCFAs production through PAA-based technology, advancing our understanding of sustainable resource recovery from sewage sludge.

10.
Water Res ; 249: 120869, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38007897

ABSTRACT

Medium-chain fatty acids (MCFAs) production from sewage sludge is mainly restricted by the complex substrate structure, competitive metabolism and low electron transfer rate. This study proposes a novel permanganate (PM)-based strategy to promote sludge degradation and MCFAs production. Results show that PM pretreatment significantly increases MCFAs production, i.e., attaining 12,036 mg COD/L, and decreases the carbon fluxes of electron acceptor (EA)/electron donor (ED) to byproducts. Further analysis reveals that PM oxidation enhances the release and biochemical conversion of organic components via disrupting extracellular polymers (EPS) structure and reducing viable cells ratio, providing directly available EA for chain elongation (CE). The microbial activity positively correlated with MCFAs generation are apparently heightened, while the competitive metabolism of CE (i.e., methanogensis) can be completely inhibited. Accordingly, the functional bacteria related to critical bio-steps and dissimilatory manganese reduction are largely enriched. Further mechanism exploration indicates that the main contributors for sludge solubilization are 1O2 (61.6 %) and reactive manganese species (RMnS), i.e., Mn(V)/Mn(VI) (22.3 %) and Mn(III) (∼16.1 %). As the main reducing product of PM reaction, manganese dioxide (MnO2) can enable the formation of microbial aggregates, and serve as electron shuttles to facilitate the carbon fluxes to MCFAs during CE process. Overall, this strategy can achieve simultaneous hydrogen recovery, weaken competitive metabolisms and provide electron transfer accelerator for CE reactions.


Subject(s)
Manganese Compounds , Oxides , Sewage/chemistry , Manganese , Fatty Acids , Oxidation-Reduction , Fermentation , Oxidants , Carbon
11.
Biology (Basel) ; 12(11)2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37998026

ABSTRACT

The roughskin sculpin (Trachidermus fasciatus) is an endangered fish species in China. In recent years, artificial breeding technology has made significant progress, and the population of roughskin sculpin has recovered in the natural environment through enhancement programs and the release of juveniles. However, the effects of released roughskin sculpin on the genetic structure and diversity of wild populations remain unclear. Studies on genetic diversity analysis based on different types and numbers of molecular markers have yielded inconsistent results. In this study, we obtained 2,610,157 high-quality SNPs and 494,698 InDels through whole-genome resequencing of two farmed populations and one wild population. Both farmed populations showed consistent levels of genomic polymorphism and a slight increase in linkage compared with wild populations. The population structure of the two farmed populations was distinct from that of the wild population, but the degree of genetic differentiation was low (overall average Fst = 0.015). Selective sweep analysis showed that 523,529 genes were selected in the two farmed populations, and KEGG enrichment analysis showed that the selected genes were related to amino acid metabolism, which might be caused by artificial feeding. The findings of this study provide valuable additions to the existing genomic resources to help conserve roughskin sculpin populations.

12.
Fish Shellfish Immunol ; 142: 109150, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37838208

ABSTRACT

Slc2a6 is a member of the slc2 family (solute carrier 2 family) and previous reports have indicated its involvement in the inflammatory response. Slc2a6 is regulated by the NF-ĸB signaling pathway. This study investigated the differential expression of slc2a6 in the early embryonic development of Japanese flounder, revealing that the early gastrula stage had the highest level of slc2a6 expression. Moreover, slc2a6 expression was increased in vitro after stimulation by lymphocystis disease virus (LCDV), and in vivo experiments also showed significantly elevated levels in the spleen and muscle tissues following LCDV stimulation. Subcellular localization revealed that Slc2a6 was expressed in both the nucleus and cytoplasm of cells. The pcDNA3.1-slc2a6 overexpression plasmid was successfully constructed; the si-slc2a6 interfering strand was screened and samples were collected. The expression of NF-ĸB signaling pathway-related genes il-1ß, il-6, nf-ĸb, and tnf-α was evaluated in overexpressed, silenced, and LCDV-stimulated samples. The results showed that slc2a6 is involved in viral regulation in Japanese flounder by regulating innate immune responses.


Subject(s)
Fish Diseases , Flounder , Iridoviridae , Virus Diseases , Animals , NF-kappa B/metabolism , Spleen/metabolism , Fish Proteins/genetics , Fish Proteins/metabolism
13.
Water Res ; 245: 120584, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37713794

ABSTRACT

Iron-based peracetic acid (PAA) advanced oxidation process (AOP) is widely used in water purification because of its high efficiency and low toxicity. In this study, for the first time, ferrous iron (Fe2+) and PAA were dosed jointly into the rising main sewer reactor, to verify the feasibility of sulfide and methane control as well as investigate the comprehensive mechanism of Fe2+/PAA on sewer biofilm. Results demonstrated the superior biocidal effect of Fe2+/PAA dosing than that of PAA alone. Intermittent Fe2+/PAA dosing showed that the average inhibitory rate of sulfide production rate (SPR) and methane production rate (MPR) was 52.0% and 29.9%, respectively, at a Fe2+/PAA molar ratio of 1:1 and PAA concentration of 3 mmol/L (i.e., the mass-based concentrations of Fe2+ and PAA were 6.79 mg-Fe/L and 228 mg/L, respectively). Beside, sewer biofilm was found to be resistant to PAA during repeated dosing events. However, resistance could be alleviated by introducing sulfide in situ in the Fe2+/PAA process, and SPR and MPR were further reduced to 27.39% and 67.32% of the control, respectively. LIVE/DEAD Staining showed that Fe2+/PAA exhibited a strong destructive effect on microbial cells, with the proportion of viable cells being 26.34%. Electron paramagnetic resonance (EPR) and free radical quenching results indicated that the inhibitory order was R-O• > •OH > Fe(IV), which led to the disruption of cellular integrity (i.e., 17.24% increase in LDH) and intracellular enzyme system (i.e., cellular metabolic disorders). Microbial analysis revealed that long-term Fe2+/PAA dosing decreased the sulfate-reducing bacteria (SRB) abundance, and the dominant genus of methanogenic archaea (MA) shifted from Methanofastidiosum, Methanobacterium to Methanosaeta. The cost of Fe2+/PAA dosing on methane and sulfide control in rising main sewers was $1.81/kg-S, economically and environmental-friendly attractive for practical applications.

14.
Sci Total Environ ; 904: 166771, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37660812

ABSTRACT

Sewage sludge management poses a pressing environmental challenge, demanding the implementation of sustainable solutions to facilitate resource recovery. Short-chain fatty acids (SCFAs) serve as valuable chemicals and renewable energy sources, underscoring the importance of maximizing their production to achieve sustainable waste management. Therefore, this study proposes a novel and green strategy, i.e., percarbonate-strengthened ferrate pretreatment to enhance SCFAs synthesis from sewage sludge, because percarbonate could activate ferrate oxidation through providing (bi) carbonate and hydrogen peroxide. Results show that percarbonate largely reduces the required ferrate dosage for fermentation improvement, and their combination exhibits obvious synergistic effects on SCFAs accumulation and sludge reduction. Under the optimal pretreatment conditions, SCFAs production is promoted to 3670.2 mg COD/L, representing a remarkable increase of 5512.4 %, 156.0 % or 395.1 % compared to the control, percarbonate alone or ferrate alone, respectively. Mechanism explorations demonstrate that percarbonate-strengthened ferrate pretreatment significantly enhances sludge solubilization, elevates substrate biodegradability, and alters the physiochemical properties of sludge to favor organics fermentation. The synergistic effects on solid organics release and sludge properties can be attributed to the combined mechanisms of enhanced oxidation and alkaline hydrolysis. Further investigations on metabolic pathways reveal that the combination substantially improves key enzyme activities associated with hydrolysis and SCFAs formation, while severely inhibits that of SCFAs consumption. These findings are further supported by the functional genes coding relevant enzymes. Moreover, the combination alters microbial structures and compositions, leading to the screening and enrichment of key microbes that facilitate SCFAs accumulation. This innovative strategy holds significant promise in advancing sewage sludge management towards a more circular and resource-efficient paradigm.


Subject(s)
Carbonates , Sewage , Sewage/chemistry , Fermentation , Fatty Acids, Volatile , Hydrogen-Ion Concentration
15.
Bioresour Technol ; 388: 129733, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37714494

ABSTRACT

Nowadays, antidepressants are massively consumed worldwide, inevitably bringing about the concern for their latent hazard to the natural environment. This research focused on exploring the effect of sertraline (SET, a typical antidepressant) on hydrogen yields from alkaline anaerobic fermentation of waste activated sludge (WAS). The hydrogen accumulation reached the peak of 14.73 mL/g VSS (volatile suspended solids) at a SET dosage of 50 mg/kg TSS (total suspended solids), i.e., 1.90 times of that in the control fermenter. The data of Illumina high-throughput sequencing demonstrated that SET promoted the expression of genes regulating the membrane transport. Microbial community analysis suggested that some species that could degrade refractory substances were enriched after SET exposure. Finally, metabolic pathways of hydrogen production and consumption were found to be significantly affected with SET addition. This study would deepen the concept of typical antidepressants influencing energy recovery from WAS.


Subject(s)
Sertraline , Sewage , Anaerobiosis , Antidepressive Agents , Fatty Acids, Volatile , Fermentation , Hydrogen/metabolism , Hydrogen-Ion Concentration , Sertraline/toxicity
16.
J Hazard Mater ; 459: 132284, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37591170

ABSTRACT

Ferric chloride (FeCl3) served as a solid acid has attracted attention recently. However, the feasibility of FeCl3 combined with nitrite for free nitrous acid (FNA) generation in controlling sulfide and methane as well as the triggering mechanisms in the complex syntrophic consortium (i.e., sewer biofilm) remain largely unknown. This work disclosed FeCl3 as an alternative acid source could obtain comparable sulfide and methane mitigations at a low FNA dose (i.e., 0.26 mg N/L), compared to that of HCl acid source. Whereas, a faster recovery rate of sulfide production was observed using FeCl3 under a higher FNA dose (i.e., 0.81 mg N/L) despite the methane control still being comparable. The toxicological mechanisms revealed FNA reacted with proteins amide Ⅰ in extracellular polymeric substances and destroyed protein hydrogen bond. Enzymatic and genic analysis unveiled the overall suppression of hydrolysis, acidogenesis, acetogenesis, sulfidogenesis and methanogenesis steps due to the inactivation of viable cells by reactive nitrogen species. Economic and environmental assessments demonstrated that the ferric-based FNA strategy reduced chemical costs and N2O emission (ca. 26.5% decrease) compared to the traditional HCl-based FNA method. This work broadens the application of iron salt-based technology in urban water system, together with understanding the biological mechanisms of FNA-based technology.


Subject(s)
Nitrous Acid , Salts , Hydrolysis , Nitrites
17.
Cancers (Basel) ; 15(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37444539

ABSTRACT

Pediatric high-grade gliomas (pHGGs) are common malignant brain tumors without effective treatment and poor patient survival. Abnormal posttranslational modification at the histone H3 tail plays critical roles in tumor cell malignancy. We have previously shown that the trimethylation of lysine 4 at histone H3 (H3K4me3) plays a significant role in pediatric ependymoma malignancy and is associated with tumor therapeutic sensitivity. Here, we show that H3K4me3 and its methyltransferase WDR82 are elevated in pHGGs. A reduction in H3K4me3 by downregulating WDR82 decreases H3K4me3 promoter occupancy and the expression of genes associated with stem cell features, cell proliferation, the cell cycle, and DNA damage repair. A reduction in WDR82-mediated H3K4me3 increases the response of pediatric glioma cells to chemotherapy. These findings suggest that WDR82-mediated H3K4me3 is an important determinant of pediatric glioma malignancy and therapeutic response. This highlights the need for a more thorough understanding of the potential of WDR82 as an epigenetic target to increase therapeutic efficacy and improve the prognosis for children with malignant gliomas.

18.
Front Microbiol ; 14: 1178575, 2023.
Article in English | MEDLINE | ID: mdl-37333647

ABSTRACT

Introduction: Vibriosis causes enormous economic losses of marine fish. The present study investigated the intestinal microbial response to acute infection of half-smooth tongue sole with different-dose Vibrio alginolyticus within 72 h by metagenomic sequencing. Methods: The inoculation amount of V. alginolyticus for the control, low-dose, moderate-dose, and high-dose groups were 0, 8.5 × 101, 8.5 × 104, and 8.5 × 107 cells/g respectively, the infected fish were farmed in an automatic seawater circulation system under a relatively stable temperature, dissolved oxygen and photoperiod, and 3 ~ 6 intestinal samples per group with high-quality DNA assay were used for metagenomics analysis. Results: The acute infections with V. alginolyticus at high, medium, and low doses caused the change of different-type leukocytes at 24 h, whereas the joint action of monocytes and neutrophils to cope with the pathogen infection only occurred in the high-dose group at 72 h. The metagenomic results suggest that a high-dose V. alginolyticus infection can significantly alter the intestinal microbiota, decrease the microbial α-diversity, and increase the bacteria from Vibrio and Shewanella, including various potential pathogens at 24 h. High-abundance species of potential pathogens such as V. harveyii, V. parahaemolyticus, V. cholerae, V. vulnificus, and V. scophthalmi exhibited significant positive correlations with V. alginolyticus. The function analysis revealed that the high-dose inflection group could increase the genes closely related to pathogen infection, involved in cell motility, cell wall/ membrane/envelope biogenesis, material transport and metabolism, and the pathways of quorum sensing, biofilm formation, flagellar assembly, bacterial chemotaxis, virulence factors and antibiotic resistances mainly from Vibrios within 72 h. Discussion: It indicates that the half-smooth tongue sole is highly likely to be a secondary infection with intestinal potential pathogens, especially species from Vibrio and that the disease could become even more complicated because of the accumulation and transfer of antibiotic-resistance genes in intestinal bacteria during the process of V. alginolyticus intensified infection.

19.
J Cell Biol ; 222(8)2023 08 07.
Article in English | MEDLINE | ID: mdl-37389864

ABSTRACT

Autophagy is a conserved and tightly regulated intracellular quality control pathway. ULK is a key kinase in autophagy initiation, but whether ULK kinase activity also participates in the late stages of autophagy remains unknown. Here, we found that the autophagosomal SNARE protein, STX17, is phosphorylated by ULK at residue S289, beyond which it localizes specifically to autophagosomes. Inhibition of STX17 phosphorylation prevents such autophagosome localization. FLNA was then identified as a linker between ATG8 family proteins (ATG8s) and STX17 with essential involvement in STX17 recruitment to autophagosomes. Phosphorylation of STX17 S289 promotes its interaction with FLNA, activating its recruitment to autophagosomes and facilitating autophagosome-lysosome fusion. Disease-causative mutations around the ATG8s- and STX17-binding regions of FLNA disrupt its interactions with ATG8s and STX17, inhibiting STX17 recruitment and autophagosome-lysosome fusion. Cumulatively, our study reveals an unexpected role of ULK in autophagosome maturation, uncovers its regulatory mechanism in STX17 recruitment, and highlights a potential association between autophagy and FLNA.


Subject(s)
Autophagosomes , Filamins , Macroautophagy , Qa-SNARE Proteins , Autophagy , Autophagy-Related Protein 8 Family , Phosphorylation , Humans , Qa-SNARE Proteins/metabolism , Filamins/metabolism
20.
J Hazard Mater ; 451: 131138, 2023 06 05.
Article in English | MEDLINE | ID: mdl-36917912

ABSTRACT

Although the biocidal effect of calcium peroxide (CaO2) has attracted increasing attention in wastewater and sludge management, its potential in the reduction of sulfide and methane from sewer is not tapped. This study aims to fill this gap through the long-term operated sewer reactors. Results showed one-time dose of 0.2% (w/v) CaO2 with 12-h exposure decreased the average sulfide and methane production by 80% during one week. The electron paramagnetic resonance and free radical quenching tests indicated free radicals from CaO2 decomposing posed a major contribution on sewer biofilms (•OH>•O2->alkali). Mechanistic analysis revealed extracellular polymeric matrix breakdown (e.g., protein secondary structure) and cell membrane damage were caused by the increased lipid peroxidation of cells and exacerbated intracellular reactive oxygen species under CaO2 stress. Moreover, the intracellular metabolic pathways, such as electrons provision and transfer, as well as pivotal enzymatic activities (e.g., APS reductase, sulfite reductase and coenzymes F420) were significantly impaired. RT-qPCR analysis unveiled the absolute abundances of dsrA and mcrA were decreased by 7.53-40.37% and 67.00-74.85%, respectively. Although this study broadens the application scope of CaO2 and provides in-depth understanding of advanced oxidation-based technology in sewer management, the pipe scale risk due to the release of calcium ions warrants further investigation.


Subject(s)
Methane , Wastewater , Methane/analysis , Sewage/chemistry , Sulfides/chemistry , Wastewater/chemistry , Wastewater/microbiology , Water Microbiology , Waste Disposal, Fluid
SELECTION OF CITATIONS
SEARCH DETAIL
...